Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)Artisanal and small-scale gold mining (ASGM) is the largest global source of anthropogenic mercury emissions. However, little is known about how effectively mercury released from ASGM is converted into the bioavailable form of methylmercury in ASGM-altered landscapes. Through examination of ASGM-impacted river basins in Peru, we show that lake area in heavily mined watersheds has increased by 670% between 1985 and 2018 and that lakes in this area convert mercury into methylmercury at net rates five to seven times greater than rivers. These results suggest that synergistic increases in lake area and mercury loading associated with ASGM are substantially increasing exposure risk for people and wildlife. Similarly, marked increases in lake area in other ASGM hot spots suggest that “hydroscape” (hydrological landscape) alteration is an important and previously unrecognized component of mercury risk from ASGM.more » « less
-
Abstract The Surface Water and Ocean Topography (SWOT) satellite has the potential to transform global hydrologic science by offering simultaneous and synoptic estimates of river discharge and other hydraulic variables. Discharge is estimated from SWOT observations of water surface elevation, width, and slope. A first assessment using just the highest quality SWOT measurements, over the first 15 months (March 2023–July 2024) of the mission evaluated at 65 gauged reaches shows results consistent with pre‐launch expectations. SWOT estimates track discharge dynamics without relying on any gauge information: median correlation is 0.73, with a correlation interquartile range of 0.51–0.89. SWOT estimates capture discharge magnitude correctly in some cases but are biased (median bias is 50%) in others. There are already a total of 11,274 ungauged global locations with highest quality SWOT measurements where SWOT discharge is expected to accurately track discharge variations: this value will increase as SWOT data record length grows, algorithms are refined and SWOT measurements are reprocessed. This first look indicates that SWOT discharge is performing as expected for SWOT data that achieve performance requirements, providing observed information on discharge variations in ungauged basins globally.more » « lessFree, publicly-accessible full text available May 16, 2026
-
Abstract Conventional satellite platforms are limited in their ability to monitor rivers at fine spatial and temporal scales: suffering from unavoidable trade‐offs between spatial and temporal resolutions. CubeSat constellations, however, can provide global data at high spatial and temporal resolutions, albeit with reduced spectral information. This study provides a first assessment of using CubeSat data for river discharge estimation in both gauged and ungauged settings. Discharge was estimated for 11 Arctic rivers with sizes ranging from 16 to >1,000 m wide using the Bayesian at‐many‐stations hydraulic geometry‐Manning algorithm (BAM). BAM‐at‐many‐stations hydraulic geometry solves for hydraulic geometry parameters to estimate flow and requires only river widths as input. Widths were retrieved from Landsat 8 and Sentinel‐2 data sets and a CubeSat (the Planet company) data set, as well as their fusions. Results show satellite data fusion improves discharge estimation for both large (>100 m wide) and medium (40–100 m wide) rivers by increasing the number of days with a discharge estimation by a factor of 2–6 without reducing accuracy. Narrow rivers (<40 m wide) are too small for Landsat and Sentinel‐2 data sets, and their discharge is also not well estimated using CubeSat data alone, likely because the four‐band sensor cannot resolve water surfaces accurately enough. BAM technique outperforms space‐based rating curves when gauge data are available, and its accuracy is acceptable when no gauge data are present (instead relying on global reanalysis for discharge priors). Ultimately, we conclude that the data fusion presented here is a viable approach toward improving discharge estimates in the Arctic, even in ungauged basins.more » « less
An official website of the United States government
